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Implementing a Raytracer Using OpenCL 
Introduction 
Effectively using OpenCL to develop a raytracer involves overcoming a number of challenges 
that do not necessarily exist within the context of traditional raytracer implementations written 
in more conventional languages such as C++ or Java. These challenges are derived from 
restrictions that are necessary so that the programs written in the OpenCL language may fully 
harness the advantage of parallel systems and execute optimally, or, in some cases, at all. 
 
In order to render photorealistic frames within reasonable timeframes, raytracers utilize 
random numbers, optimizing data structures and some kind of recursive execution that allows 
multiple rays to be bounced and/or scattered for each individual pixel. Within conventional 
raytracer implementations, random numbers are often accessible through the use of standard 
library functions, data structures are likely to make use of pointers (in one way or another) and 
the rays may be traced through the use of recursive functions.  
 
Unfortunately, the OpenCL standard does not offer random number generators, support the 
passing of pointer-based data structures to parallel devices (referred to hereon in collectively as 
‘the device’ or ‘the devices’) or allow for recursive calls to kernels within themselves. For this 
reason, alternative solutions must be written in order to facilitate the same functionality when 
executing programs in parallel and this document discusses potential suggestions for doing so.  
 

 
 
Random Number Generation 
Regardless of whether it is for it is for noise computation for texturing, Monte Carlo raytracing 
(path tracing) or artistic post-processing techniques, it is highly likely, if not certain, that an 
advanced raytracer will need to make use of randomly generated numbers at some point within 
the program.  
 
Generating completely random numbers is not something supported by the OpenCL standard 
and, at current, there is no equivalent to C’s ‘rand’ function in any implementation of the 
language. Despite this, it is entirely feasible to create functions that yield uniformly distributed 
random results when given a perceivably randomly generated seed. Dr. David B. Thomas (of 
Imperial College London) offers an implementation of such a random number generator in 
OpenCL that he, on his website, refers to as MWC64X (Thomas, David). 
 
Despite the effectiveness of such generators, to produce different random numbers each time 
when used, the random states must first be initialized by some random function independent of 
the function used. This may be achieved through the allocation of an array on the host 
populated with random numbers (generated using whatever suitable random functions the host 
language may offer), that may then be passed to the device for use with the random number 
generator.  
  

Thomas, David. (Date Unknown). The MWC64X Random Number Generator. [online] Accessed at <http://cas.ee.ic.ac.uk/people/dt10/ 
research/rngs-gpu-mwc64x.html> [Accessed 11th June 2013] 
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Building the Acceleration Structure 
Although there are many valid methods for optimizing the evaluating of ray-to-triangle 
intersections within a three-dimensional scene (including binary space partitioning and grid 
hierarchies), in this document the implementation of a bounding volume hierarchy will be 
covered. 
 
A bounding volume hierarchy (BVH) is essentially a binary tree in which the scene is divided 
into two three-dimensional boxes that, in turn, have increasingly smaller pairs of child boxes, 
until only single triangles fit within the boundaries of the child boxes. In this sense, all leaf nodes 
of a BVH are triangles and all other nodes are what may be referred to hereon in as ‘bounding 
boxes’. 
 
In object-oriented programming, a binary tree is something typically implemented through the 
use of dynamically allocated memory and pointers, but, given the number of leaf nodes may be 
pre-calculated simply be evaluating the number of triangles in the scene, it may be represented 
as an array that is no larger than the number of leaf nodes. 
 
Although it is almost certainly feasible to create the BVH using OpenCL on the device, efficient 
allocation of workload and preventing data races could potentially be fairly complex difficulties 
to overcome and so, for the sake of simplicity, building an acceleration structure on the host is a 
reasonable approach. 
 
Given that any part of the program written on the host does not share the restrictions of the 
OpenCL standard, it is possible to build a BVH recursively in a conventional manner, simply 
substituting pointer values for integer values representing indices of the array containing all 
bounding boxes. There are many ways in which the data representing the bounding boxes may 
be optimized so as to reduce memory footprint, but one of the most obvious refinements 
pertains to the nature of the overall BVH data structure itself.  
 
As the triangles within a scene would also need to be stored in an array in order to be efficiently 
accessed on the device, the child members of the bounding boxes may be used to lookup in 
either the triangle or bounding box array without even having to cast the values used. Evidently, 
within the traversal of the BVH, the program would need to differentiate between leaf nodes 
and non-leaf nodes, but this may be easily achieved through the use of Boolean flags. The 
diagrams below convey this concept: 

 
 
 
 
 
 
 
 

 
 
  
  

A 

i 

B C 

ii iii iv 

A B C 

i ii iii iv 

min: (-5,-10,-3) 
max: (7, 2, 1) 
children[0]: 1 
children[1]: 2 
leaf: false 

min: (-5,-10,-3) 
max: (0, -5, 1) 
children[0]: 2 
children[1]: 3 
leaf: true 
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Traversing the Acceleration Structure 
Although it is reasonable to build an acceleration structure on the host when implementing a 
raytracer using OpenCL, assuming the component of the program that performs the raytracing 
does so heterogeneously, it is essential to design the intersection routine so that the 
acceleration structure may be traversed the on the device, in parallel. 
 
Again, using a BVH as an example of such a structure, where its building is complicated slightly 
by the need to use arrays in place of pointer-based systems, its traversal is made difficult by the 
lack of recursive calls within kernels. Within a BVH, it is necessary, in some way, to devise an 
implementation of a depth-first search algorithm for a binary tree, which is relatively 
straightforward using traditional recursive techniques, but the limitations of OpenCL make 
doing so more complex. 
 
Although there are several possible stack-less methods for traversing a binary tree, one possible 
algorithm centers on the implementation of a rudimentary stack used to track the nodes the 
raytracer has evaluated and those which remain unevaluated. 
 
The structure of the stack may be designed in many different ways, but one of the most 
simplistic, but still effective, approaches makes use of an array of elements that specify the 
index of the parent bounding box being evaluated and a second value representing whether it is 
the left or right child of the parent box being inspected at any given time. An integer may be 
used to represent the stack pointer so that the program may move up and down the stack as 
necessary. As OpenCL does not facilitate the dynamic allocation of memory on the device, in 
order to ensure an appropriate stack size for the BVH, it is necessary to write the kernel with a 
sufficiently large predefined array size hardcoded into the precompiled code, based upon the 
maximum expected depth of the BVH. The following flowchart demonstrates the potential 
execution patterns of a simple BVH stack: 
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SP  = stack pointer (integer) 
CB  = current box (bounding box) 
CBi = current box index (integer) 
 

It is important to note that this design does not sort the child bounding boxes (based on which 
would be intersected first) before evaluating them, meaning that all potential triangle 
intersections must be considered before returning a result. Designing the stack system in such 
a way that would facilitate such sorting would be a major optimization, and is certainly 
something worthy of consideration. 
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Multiple Rays per Pixel 
Raytracers that go beyond the Blinn-Phong shading model inevitably require more than one ray 
emission per pixel. Whether this is for reflection, refraction or path-tracing techniques, the 
program will need to offer some means by which multiple rays may contribute to the color of a 
single pixel. 
 
In typical implementations, this may be achieved through the use of ‘intersection’ and ‘shade’ 
functions that may be called recursively whenever they require new rays to be emitted, but this 
is more complex in the context of OpenCL given that kernel recursion is not possible and many 
pixel values are calculated simultaneously in parallel, each of which may require a different 
number of rays depending on the surfaces with which they intersect. 
 
For this reason, emitted ray intersections must be calculated iteratively, through the use of 
multiple calls from the host to kernels on the device that compute the intersection and shade 
results for each ray. Although the number of rays contributing to each pixel may vary greatly, 
the most straightforward approach involves maintaining and updating a fixed-size (the number 
of pixels) array of rays for each iteration, ensuring that only “valid” (which is to say, rays that 
have been emitted) are used to contribute to the respective pixel values. The following diagram 
is an indication of the program flow in one possible implementation of a simple raytracer: 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Within this design, the intersections kernel is used twice – once for determining the first points 

in three-dimensional space that the emitted rays intersect and second for determining the first 

points in three-dimensional space that light rays intersect when pointing toward the respective 

hit points. These pairs of hits points may then be compared (for each pixel, in parallel) within 

the kernel calculating shade and, should they be the same, the emitted light ray is used to 

determine the shading of the surface intersected. 
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