
Raytracing with OpenCL
Andy Haslam

Introduction to OpenCL

• Open standard for programming on ‘devices’ with many cores, such
as GPUs

• Language used is based on C99, but has several significant differences

• Interfaces with ‘host’, using C

“The open standard for parallel programming of heterogeneous systems”

Introduction to OpenCL Kernels

• May be programmed to access different sections of data based on
worker IDs

• Kernels may not be called from within kernels, although standard
functions may be used

Similar to functions in C, but executed in parallel

__kernel void exampleKernel(__global int* array, int value)
{

array[get_local_id(0)] = value;
}

Shared array (slow) Passed by value (fast)

Used to differentiate between threads

Accessing Kernels From C

1) Create device context and command queue

2) Build kernels from source code

3) Create device memory and set kernel arguments

4) Execute kernels and wait for completion

5) Copy results from device memory

Harnessing the power of OpenCL in five easy steps

Accessing Kernels From C

size_t dataBytes;

cl_uint numberOfPlatforms;

cl_context_properties properties[3];

clGetPlatformIDs(1, clrPlatformIds, &numberOfPlatforms);

properties[0] = (cl_context_properties)CL_CONTEXT_PLATFORM;

properties[1] = (cl_context_properties)clrPlatformIds[0];

properties[2] =(cl_context_properties)0;

deviceContext = clCreateContextFromType(properties, CL_DEVICE_TYPE_CPU, NULL, NULL, NULL);

clGetContextInfo(deviceContext, CL_CONTEXT_DEVICES, 0, NULL, &dataBytes);

deviceIds = (cl_device_id *)malloc(dataBytes);

clGetContextInfo(deviceContext, CL_CONTEXT_DEVICES, dataBytes, deviceIds, NULL);

commandQueue = clCreateCommandQueue(deviceContext, deviceIds[0], 0, NULL);

1) Create device context and command queue

Accessing Kernels From C

cl_program program = clCreateProgramWithSource(deviceContext,

1,

(const char **)&sourceString,

(const size_t *)&sourceSize,

NULL);

clBuildProgram(program, 1, &deviceIds[0], passedOptions, NULL, NULL);

exampleKernel = clCreateKernel(program, “example", NULL);

clReleaseProgram(program);

2) Build kernels from source code

Accessing Kernels From C

int deviceMemoryValue = 10,

numberOfWorkers = 100;

cl_mem deviceMemoryArray = clCreateBuffer(deviceContext,

CL_MEM_WRITE_ONLY,

numberOfWorkers*sizeof(int),

NULL,

NULL);

clSetKernelArg(exampleKernel, 0, sizeof(cl_mem), (void *)&deviceMemoryArray);

clSetKernelArg(exampleKernel, 1, sizeof(int), (void *)&deviceMemoryValue);

3) Create device memory and set kernel arguments

Accessing Kernels From C

clEnqueueNDRangeKernel(commandQueue,

exampleKernel,

1,

NULL,

&numberOfWorkers,

&numberOfWorkers,

0,

NULL,

NULL);

clFinish(commandQueue);

Total workers

Total workers in workgroup

Workgroup Dimensions

4) Execute kernels and wait for completion

Accessing Kernels From C

int* hostMemoryArray = (int*)malloc(numberOfWorkers*sizeof(int));

clEnqueueReadBuffer(commandQueue,
deviceMemoryArray,
CL_TRUE,
0,
numberOfWorkers*sizeof(int),
hostMemoryArray,
0,
NULL,
NULL);

clFinish(commandQueue);

5) Copy results from device memory

Key Differentiators of OpenCL

• No recursion within kernels (but you can call helper functions)

• No dynamic memory (no pointers, no malloc etc.)

• No standard C headers (but you can create your own)

• OpenCL-specific data types, including vectors (e.g. float3)

• OpenCL-specific functions, including vector operations (e.g. cross)

What makes OpenCL different/(harder!?)

Considerations for Raytracing with OpenCL

• Acceleration structures without pointers or recursion

• Tracing of non-primary rays without recursion

• Taking advantage of OpenCL-specific data types and functions

Thinking about those differences...

Considerations for Raytracing with OpenCL

1) Represent all triangles in single array

2) Recursively build bounding volume hierarchy on host as array of
bounding boxes (using array indices in place of pointers)

3) Copy BVH to device

4) Using a local traversal stack (array whose size is declared in header),
traverse BVH within OpenCL kernel on device

Acceleration structures without pointers or recursion

Considerations for Raytracing with OpenCL

cameraRaysKernel(input camera, output rays);

for(number of recursions)

{

intersectionsKernel(input rays, output hits);

shadeKernel(input hits, output rays, output pixels);

}

Tracing of non-primary rays without recursion

Considerations for Raytracing with OpenCL

for(number of rays per pixel)
{

cameraRaysKernel(input camera, output rays);

for(number of recursions)
{

intersectionsKernel(input rays, output hits);

for(each light)
{

lightRaysKernel(input hits, input light, output lightRays);
intersectionsKernel(input lightRays, output lightHits);
shadeKernel(input hits, input lightHits, input lightRays, input light, output rays, output pixels);

}

}

}

Tracing of non-primary rays without recursion (path tracing)

Considerations for Raytracing with OpenCL

Within shadeKernel:

for(number of pixels)
{

if(hits[pixelNumber].triangle == lightHits[pixelNumber].triangle)

{

pixels[pixelNumber] += shadeColor(hits[pixelNumber].normal,
lightRays[pixelNumber].direction,
light);

rays[pixelNumber] = newRandomRay(hits[pixelNumber]);

}

}

Tracing of non-primary rays without recursion (shading kernel)

Considerations for Raytracing with OpenCL

• Within C, vectors must be built from user-defined structs
• Better to use float3 and native operations in OpenCL

• Create converter functions!

• Some data may only ever exist on the device:-
• Rays, hits and allLightHits – all of which use vectors

• Structs can be built with float3 to prevent conversion!

• Headers must only be included in OpenCL C files to prevent compile errors

• Size must be known and hardcoded when defining device memory in C

Taking advantage of OpenCL-specific data types and functions

Demonstration
See it in action…

With soft shadowsWithout shadows

